Mesenchymal stromal cells (MSCs) are prime candidates for regenerative medicine and therapeutic applications due to both their potent immuno- modulatory function and a unique ability to proliferate and differentiate into a variety of cell lineages. However, the stresses incurred during biopreservation/stability intervals (non-frozen and cryopreserved), including transit to and from the clinic can render MSCs ineffective and potentially unsafe.
Challenges related to the formulation, transportation, distribution and delivery of source material (tissue, blood, marrow) and MSC-based products are important and inter-related components of the supply chain and scale-up.
Effective biopreservation can optimize the quality of cell/tissue source material and final cell/tissue products, mitigate the adverse effects of interruptions and unforeseen events throughout the supply chain, as well as support the return to function of MSCs following patient administration. Conversely, inadequate environmental controls and biological support throughout the supply chain can limit transportation options, restrict the geographic distribution and reduce the clinical efficacy of MSC-based therapies. Indeed, it is possible that the contradicting reports in the literature on the impact of biopreservation on MSCs may stem from the lack of appropriate biopreservation protocols. Optimized biopreservation considerations are critical components of cell and tissue manufacturing systems, a robust and risk-mitigated supply chain, and are recommended for the commercialization of MSC-based products. This article aims to discuss the importance of Biopreservation Best Practices in the commercialization of MSC-based therapies and the relative benefits and concerns of different supply chain models.
To read more or to download a copy, please visit our White Paper download page.